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ABSTRACT

Let r, k be positive integers (parameters) with r ≥ 2, and let pr be the r-
th prime number. Let Wk denote the set of positive integers n for which
the number of distinct prime factors of n is greater or equal to k. By using
the prime number theorem and Bertrand’s theorem, we will determine
arithmetic functions f, g : N −→ N for which f (n)−αrg (n) has infinitely
many sign changes on the set Wk, where αr =

pr−1

pr
. In the framework

of internal set theory (for more details, see Nelson (1977)), some notions
concerning nonstandard analysis as well as unlimited positive integers
have been used.
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1. Introduction

Let ω (n) denote the number of distinct prime factors of n. For every k ≥ 1,
we put

Wk = {n ∈ N ; ω (n) ≥ k} . (1)

Recall that a Diophantine inequality or equation is an inequality (resp. equa-
tion) whose solution required to be integers. In arithmetic functions, one of
important topics is to establish Diophantine inequalities (resp. equations) for
infinitely many n ∈ N (see Sándor (2008, 2014), and De Koninck and Mercier
(2004)). Many researchers have obtained their results on the set N =W1 ∪{1}.
The purpose of this work is to study (on the setWk, with k ≥ 1) some Diophan-
tine inequalities involving ϕs (n), π (n) and dn. One can refer to, Nathanson
(2000), and Yan (2002).

Let pr denote the r-th prime number, with r ≥ 2. In this paper, we will
determine a couple of arithmetic functions (f, g) such that f (n)− αrg (n) has
infinitely many sign changes on the set Wk, where αr =

pr−1
pr

. That is, we

prove that there is an infinite sequence of positive integers (ni)i=1,2,... ⊂ Wk

and there is a couple of arithmetic functions (f, g) such that

αr <
f (ni)

g (ni)
, for i = 1, 2, . . .

and also, there is an infinite sequence of positive integers (mi)i=1,2,... ⊂ Wk

such that
f (mi)

g (mi)
< αr, for i = 1, 2, . . .

or, equivalently

. . . <
f (mi)

g (mi)
< . . . < αr < . . . <

f (ni)

g (ni)
< . . . , for i = 1, 2, . . .

Because, it is very difficult to determine the value of pr whenever r is sufficiently
large. Then we can say that there is an approximation of αr by rationals, where
αr is the rapport of two consecutive primes pr−1 and pr. Thus, we can surround
αr from the right and from the left by infinitely many rational numbers.

2. Materials

In this work, we use the following results. One can refer to, De Koninck
and Mercier (2004), and Wells (2005).

254 Malaysian Journal of Mathematical Sciences



Notes on Certain Arithmetic Inequalities Involving Two Consecutive Primes

Theorem 2.1 (Euclid’s Theorem). There are infinitely many primes.

Theorem 2.2 (Twin Prime Conjecture). There are infinitely many twin primes.

Theorem 2.3 (Prime Number Theorem). Let π(x) denote the number of prime
numbers not exceeding x, that is,

π (x) =
∑
p≤x

1.

Then
lim

x−→+∞

π (x) log x

x
= 1.

Theorem 2.4 (Bertrand’s theorem). If n is an integer greater than 2, then
there is at least one prime between n and 2n− 1.

Definition 2.1. A positive integer is called square-free if it is the product of
distinct prime numbers.

Definition 2.2. Let γ(n) denote the Kernel of n given by

γ (1) = 1 and γ(n) =
∏
p|n

p, for n ≥ 2.

Definition 2.3. Let n be a positive integer. We have

• τ (n) is the number of the positive divisors of n, i.e.,

τ (n) =
∑
d|n

1.

• σ (n) is the sum of the positive divisors of n, i.e.,

σ (n) =
∑
d|n

d.

• σ2 (n) is the sum of the square of the positive divisors of n, i.e.,

σ2 (n) =
∑
d|n

d2.

• ϕ (n) = ϕ1 (n) or Euler’s function: is defined to be the numbers of non-
negative integers m less than n which are prime to n, i.e.,

ϕ1 (n) =
∑

0≤m<n
gcd(m,n)=1

1 = n
∏
p|n

(
1− 1

p

)
, ϕ1 (1) = 1.
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• For every s ≥ 1, ϕs (n) is given by

ϕs (n) = ns
∏
p|n

(
1− 1

ps

)
, ϕs (1) = 1.

Theorem 2.5 (see De Koninck and Mercier (2004) in p. 254). If n = pr11 p
r2
2 . . . prss

is the standard factorization of n as a product of powers of distinct primes, then

s∏
i=1

pi
pi − 1

>
σ (n)

n
.

In addition, we need the following notions (see Bellaouar and Boudaoud
(2015), Van den Berg (1992), and Nelson (1977)).

1. A real number x is called unlimited if its absolute value |x| is larger than
any standard integer n. So a nonstandard integer ω is also an unlimited
real number.

2. A real number ε is called infinitesimal if its absolute value |ε| is smaller

than
1

n
for any standard n.

3. A real number r is called limited if is not unlimited.

4. Two real numbers x and y are equivalent or infinitely close (i.e., we can
write x ' y) if their difference x− y is infinitesimal.

3. On the sign changes of f (n)− αrg (n)

Let pn be the n-th prime number. From the Prime Number Theorem, we
deduce that

lim
n−→+∞

pn−1
dn−1

= +∞,

where dn−1 is the gap between pn and pn−1.

For every k ≥ 1, we can choose the r-th prime number pr and the integer s
as the following way: pr is sufficiently large and s ≥ 1, such that

pk <

(
1 +

pr−1 − 1

dr−1 + 1

)1

s
. (2)
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For example, in the case when k = 50000, then for

pr−1 = 116197928014120574295629.

That is
pr = 116197928014120574295721,

and also dr−1 = pr − pr−1 = 92. Thus, for s = 3, it follows that

p50000 = 611953 <

(
1 +

pr−1 − 1

dr−1 + 1

)1

s

=

(
1 +

116197928014120574295629− 1

93

)1

3

= 10000000.07.

Theorem 3.1. Let k ≥ 1 be the integer of (1). Under the same assumption
as in (2), prϕs(n)− pr−1ns has infinitely many sign changes on the set Wk.

Proof. We show that (i) and (ii) are each true for infinitely many n ∈ Wk,
where

(i) prϕs(n) > pr−1n
s,

(ii) prϕs(n) < pr−1n
s.

First, we prove that there exists a positive integer n0 such that

prϕs(n0) > pr−1n
s
0.

Let pN be a prime number satisfying

pN >
1(

pr
pr−1 + 1

)1

k − 1

+ 1. (3)

Suppose the opposite, this means that for all n ∈Wk we have

prϕs(n) ≤ pr−1ns.

In particular, for n = pNpN+1 . . . pN+k−1 ∈Wk, it follows from (3) that

pr
pr−1

≤ ns

ϕs (n)
=
∏
p|n

ps

ps − 1
≤
∏
p|n

p

p− 1
<

(
pN

pN − 1

)k
<

pr
pr−1 + 1

,
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which implies that pr−1 > pr−1 + 1. A contradiction.

Second, from the hypothesis of (2), we prove that there exists a positive
integer n1 such that

prϕs(n1) < pr−1n
s
1.

Assume, by way of contradiction, that for all n ∈Wk we get

prϕs(n) ≥ pr−1ns.

In particular, for n = 2.3 . . . pk (which is an element of Wk), it follows from (2)
that

pr
pr−1

≥ ns

ϕs (n)
=
∏
p|n

ps

ps − 1
≥ psk
psk − 1

>
pr

pr−1 − 1
.

A contradiction.

Finally, we return to prove the inequalities (i) and (ii) for infinitely many
n ∈ Wk. In fact, from the definition of ϕs we see that prϕs(ni0) > pr−1

(
ni0
)s

and prϕs(ni1) < pr−1
(
ni1
)s both hold for every i ≥ 1. This completes the proof

of Theorem 3.1.

Example 3.1. From the proof of Theorem 3.1, it is clear that if

pr = 116197928014120574295721

and
pr−1 = 116197928014120574295629,

then prϕ3(n)−pr−1n3 has infinitely many sign changes on the setW50000. That
is, there are infinitely many n ∈W50000 such that prϕ3(n) > pr−1n

3 and there
are infinitely many m ∈W50000 such that prϕ3(m) < pr−1m

3.

Theorem 3.2. The inequality prdn−pr−1dn+1 has infinitely many sign changes
on the set W1.

Proof. For all positive integers n, write dn = pn+1 − pn so that d1 = 1 and all
other dn are even. Since (3, 5, 7) is the only prime triplet of the form p, p+2, p+4
(see Santos (2004) in p. 76), by using twin prime conjecture, there are infinitely
many primes (pn, pn+1, pn+2) such that{

dn = pn+1 − pn = 2,
dn+1 = pn+2 − pn+1 ≥ 4. (4)

From Bertrand’s theorem and (4), we have

prdn − pr−1dn+1 ≤ 2 (pr − 2pr−1) < 0.
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Thus, the inequality holds infinitely often. On the other hand, from Guy (1994)
in p. 26, Erdös and Turán have shown that dn > dn+1 infinitely often. Then
prdn − pr−1dn+1 > 0 for infinitely many n. This completes the proof.

Theorem 3.3. Let π (n) be the number of primes which satisfy 2 ≤ p ≤ n,
and let ` be a positive integer. Then prπ(n) − pr−1π(n + `) has finitely many
sign changes on the set W1.

Proof. We suppose that prπ(n)−pr−1π(n+`) has infinitely many sign changes,
that is, prπ(n) < pr−1π(n+`) holds for infinitely many n. For each such integer
n, we must have

π (n) < π (n+ `) ≤ π (n) + `. (5)

Noticing that the right hand side of (5) can be deduced by induction on `.
Thus,

π (n) <
pr−1`

pr − pr−1
.

A contradiction, because π (n) is asymptotic to
n

log n
which tends to the infinity.

The proof is finished.

Corollary 3.1. The inequality prπ(n) > pr−1π(n+`) holds for infinitely many
n ∈W1.

Proof. In 1849, Polignac conjectured the following statement: For every even
natural number 2k there are infinitely many pairs of consecutive primes pn, pn+1

such that dn = pn+1 − pn = 2k. For more details, see Rebenboim (1996) in p.
250. If ` is either even or odd, there are infinitely many pairs of consecutive
primes pn, pn+1 such that pn+1 − pn > `. For each such prime pn, let n = pn.
It follows that π (n) = π (n+ `), and therefore prπ(n) > pr−1π(n+ `).

Proposition 3.1. The inequality σ (n) < σ (n− 1) holds for infinitely many
n ∈W2.

Proof. Since there are infinitely many distinct primes p, q such that

N =
pq − 1

2
> p+ q.

Then for n = pq, we have

σ (n− 1) ≥ 1 + 2 +N + n− 1 > 1 + p+ q + n = σ (n) .

This completes the proof.
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Remark 3.1. Using the same idea of the proof of Proposition 3.1, we can prove
the inequality σ (n) < σ (n− 1) for infinitely many n ∈Wk, with k = 3, 4, . . .

Lemma 3.1. Let p, q and r be distinct primes. If n = pqr, then

8n <
∑

d|n, d<n

d2.

Proof. Suppose that n = pqr, where p < q < r and 8 < r. Since qr|n and
qr < n, it follows for dt = qr that d2t = q2r2 > r (pqr) > 8n. Then, evidently

8n <
∑

d|n, d<n

d2.

It therefore remains to verify the triplets (2, 3, 5), (2, 3, 7), (2, 5, 7) and (3, 5, 7)
which are all true.

Theorem 3.4. If k ≥ 3, then the inequality σ2 (n) > nτ (n) + n2 holds for
infinitely many n ∈Wk.

Proof. Let n ∈Wk be a square-free integer, with k ≥ 3. We have

σ2 (n)

nτ (n)
=

n2 +
∑

d|n, d<n
d2

nτ (n)
=

n

τ (n)
+

∑
d|n, d<n

d2

nτ (n)
,

with τ (n) = 2k. By induction on k, it suffices to prove that
∑

d|n, d<n
d2 > n.2k.

In fact, let k = 3 and let n = q1q2q3 with q1, q2, q3 are distinct primes. From
Lemma 3.1, we have

n.2k = q1q2q3.2
3

<
∑

d|n, d<n

d2

= 1 + q21 + q22 + q23 + (q1q2)
2
+ (q1q3)

2
+ (q2q3)

2 .

Let k ≥ 4, and assume that the result holds for k − 1. Let n = q1q2 . . . qk with
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the primes q1, q2, . . . , qk are distinct. Since 2q1 ≤ q21 , then

n.2k = 2q1 (q2q3 . . . qk) .2
k−1

< 2q1
∑

d|q2q3...qk,
d<q2q3...qk

d2

≤ q21
∑

d|q2q3...qk,
d<q2q3...qk

d2

<
∑

d|q1q2...qk,
d<q1q2...qk

d2.

This completes the proof of Theorem 3.4.

Proposition 3.2. The inequality

τ (γ (n)) ≥ γ (τ (n)) > pr
pr−1

holds for infinitely many n ∈Wk.

Proof. Let (q1, q2, . . . , qk) be an k-tuple of distinct primes and let α1, α2, . . . , αk
be positive integers of the form 2a − 1 with a ≥ 1. For n = qα1

1 qα2
2 . . . qαk

k , we
have

τ (γ (n)) = τ (q1q2 . . . qk) = 2k,

and

γ (τ (n)) = γ

(
k∏
i=1

(1 + αi)

)
= 2.

Finally, the right hand side of the inequality of Proposition 3.2 follows from
Bertrand’s theorem.

Proposition 3.3. If k ≥ 2, then τ (γ (n))− γ (τ (n)) has infinitely many sign
changes on the set Wk.

Proof. From Proposition 3.2, it suffices to prove that τ (γ (n)) < γ (τ (n))
holds for infinitely many n ∈ Wk. In fact, let (q1, q2, . . . , qk) be an k-tuple of
distinct primes and let α1, α2, . . . , αk be positive integers of the form lai − 1,
for i = 1, 2, . . . k respectively, where l1, l2, . . . , lk are distinct odd primes and
a ≥ 1. For n = qα1

1 qα2
2 . . . qαk

k , we obtain

γ (τ (n)) = γ

(
k∏
i=1

(1 + αi)

)
= l1l2 . . . lk.
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and
τ (γ (n)) = τ (q1q2 . . . qk) = 2k.

This completes the proof of Proposition 3.3.

Theorem 3.5. There exist two arithmetic functions f, g : N −→ R for which
prf (n) − pr−1g (n) changes sign infinitely often on the set Wk. Moreover,
if f(1) and g (1) are two equal positive integers, then (pr, pr−1) = (3, 2) and
f (1) = g (1) = 1.

Proof. We shall use the n-th convergent of an irrational number (because, any
irrational number can be written uniquely as an infinite simple continued frac-
tion, see Yan (2002) in p. 44). Let [a0, a1, . . . , an, . . .] be an infinite simple

continued fraction. We denote the n-th convergent by
Pn
Qn

, where for every

n ≥ 2 

P0

Q0
=
a0
1
,

P1

Q1
=
a0a1 + 1

a1
...

Pn
Qn

=
anPn−1 + Pn−2
anQn−1 +Qn−2

.

(6)

Then from Yan (2002), for every n ≥ 1 we have

PnQn−1 − Pn−1Qn = (−1)n−1 .

Now, let pr be the r-th prime number with r ≥ 2. We put for all positive
integer n,

f (n) =
PnQn−1
pr

, g (n) =
Pn−1Qn
pr−1

; n ≥ 1

It is clear that prf (n)− pr−1g (n) changes sign infinitely often on the set Wk.
Which leads to the following result: If f (1) = g (1) ∈ N, then pr = 3 and
f (1) = g (1) = 1. Indeed, if f (1) = g (1) = m for a certain positive integer m,
it follows that

P1Q0

pr
=
P0Q1

pr−1
= m.

According to equations (6), we find

a0a1 + 1

pr
=
a0a1
pr−1

= m.
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Therefore, m (pr − pr−1) = 1. Thus, we must have m = 1 and pr = 3. That
completes the proof of Theorem 3.5.

4. Notes on the set Ar,s

In this section, we present some properties of the set Ar,s which is defined
by the following notation.

Notation 4.1. Let r, s be positive integers (parameters) with r ≥ 2. We put

Ar,s = {n ∈ N ; prϕs (n) > pr−1n
s} . (7)

Proposition 4.1. If r ≥ 3, then there are no positive integers n ∈W1 satisfy-
ing

ϕ1 (n)

n
=
pr−1
pr

. (8)

Proof. Let n be an odd positive integer. Because ϕ1 (n) is always an even, then
prϕ1 (n) 6= pr−1n. Let n be an even positive integer that satisfies (8). Since
(pr, pr−1) = 1, then pr divides n. Therefore, there exist two positive integers
r1 and β1 such that

n = r1p
β1
r ; (r1, pr) = 1,

where r1 is even. It follows from equation (8) that

ϕ1 (r1)

r1
=

pr−1
pr − 1

.

Now, for r1 = 2aN with a ≥ 1 and N is odd, we have

ϕ1 (r1)

r1
=
ϕ1 (2

aN)

2aN
=
ϕ1 (N)

2N
=

pr−1
pr − 1

.

Finally, using Bertrand’s theorem we obtain

ϕ1 (N)

N
=

2pr−1
pr − 1

>
pr

pr − 1
> 1.

Which is impossible, since ϕ1 (t) ≤ t for every t ≥ 1.

Remark 4.1. If n is an even positive integer, then n /∈ Ar,1. Indeed, for
n = 2aN with (2, N) = 1 and a ≥ 1. It follows from Bertrand’s theorem that

prϕ1 (n) = pr2
a−1ϕ1 (N) < pr−12

aϕ1 (N) ≤ pr−1n, (9)

which we may assure the right hand side of (9) because ϕ1 (N) ≤ N .
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Proposition 4.2. For every r ≥ 3, Ar,s has an infinity of prime numbers.

Proof. Using Bertrand’s theorem, for every prime number p ≥ (pr−1)

1

s , we
have

(pr − pr−1) ps − pr > 0,

where pr > 3. It follows that

pr (p
s − 1) > pr−1p

s,

and therefore p ∈ Ar,s. As required.

Theorem 4.1. Suppose that

(
pr
dr−1

)1

s ≥ 3, (10)

and let n /∈ Ar,s be an odd prime power (for example, by (10), 3m /∈ Ar,s for
every m ≥ 1). Then there exists a positive integer r0 such that n ∈ Ar+r0,s or
n ∈ Ar−r0,s.

Proof. For every r′ ≥ 1, assume that n = pm /∈ Ar±r′,s with m ≥ 1. Then
p ∈ Ai,s for all i ≥ 2. Which implies that the following inequalities

pi
pi−1

≤ ps

ps − 1
≤ p

p− 1
≤ 3

2

hold for every i ≥ 2. This is a contradiction, since
p3
p2

=
5

3
>

3

2
.

Proposition 4.3. Let a ≥ 2 be an almost perfect number (that is, a number
such that σ (n) = 2n − 1. For more details, see Guy (1994) in p .45). For all
n ∈ {am ; 2 ≤ m ≤ a and (a,m) = 1}, we have n /∈ Ar,1.

Proof. It is clear that for all primes p ≤ a,(
2− 1

a

)(
p

p− 1

)
> 2. (11)

Let n = am, with 2 ≤ m ≤ a. Suppose the contrary, that is, n ∈ Ar,1. It
follows that

pr > pr−1
∏
p|n

p

p− 1
.
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Moreover, if m = qα1
1 qα2

2 . . . qαs
s , where (qi)i=1,2,...,s are distinct primes and

(a,m) = 1, then

pr > pr−1
∏
p|a

p

p− 1

(
qs

qs − 1

)s
.

On the other hand, from Theorem 2.5 and Bertrand’s theorem, we get

2 >

(
2− 1

a

)(
qs

qs − 1

)s
,

because a is an almost perfect number. Which contradicts (11).

Theorem 4.2. Let ` ≥ 2 be a limited positive integer and let q be an unlimited
prime number. If r is limited, then ` ∈ Ar,s if and only if `q ∈ Ar,s.

Proof. From the definition of Ar,s in (7), we see that ` ∈ Ar,s if and only if

pr
∏
p|`

(
1− 1

ps

)
− pr−1 > 0. (12)

or, equivalently, for every positive infinitesimal ε we get

pr
∏
p|`

(
1− 1

ps

)
− pr−1 − ε > 0,

because ` and pr are limited. In particular, for

ε =

pr
∏
p|`

(
1− 1

ps

)
qs

' 0,

we get

pr
∏
p|`

(
1− 1

ps

)
− pr−1 −

pr
∏
p|`

(
1− 1

ps

)
qs

> 0. (13)

Since ϕs is multiplicative, we have `q ∈ Ar,s.

Conversely, if `q ∈ Ar,s, it follows from (12) and (13) that ` ∈ Ar,s.

Proposition 4.4. If n is an unlimited almost perfect number, then n /∈ Ar,1.
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Proof. Let n be an unlimited almost perfect number (for example, n = 2t with
t is unlimited). Suppose the contrary, that is, n ∈ Ar,1. It follows that

σ (n)

n
<

pr
pr−1

.

There are two cases:

• In the case when pr is unlimited, then from the Prime Number Theorem
we have

2 ' 2− 1

n
=
σ (n)

n
<

pr
pr−1

' 1.

It is an impossible case.

• In the case when pr is limited, then from Bertrand’s theorem we get

2− 1

n
=
σ (n)

n
<

pr
pr−1

≤ 2− 1

pr−1
.

Thus, n ≤ pr−1. Since n is unlimited, then it is also an impossible case
as well.

This completes the proof.

Proposition 4.5. Let 2 = p1 < p2 < . . . be the sequence of primes in increasing
order, and let n = pα1

1 pα2
2 . . . pαs

s with s ' +∞ and αi ≥ 1 for i = 1, 2, . . . , s.
Let N ≥ 2 be a limited divisor of n, then we have

n

N
/∈ Ar,1.

Proof. Let [x] denote the integer part of x. Since

[∏
p|n

p

p− 1

]
is unlimited, then

for every limited divisor N of n with N ≥ 2, we get

ϕ (n) = n
∏
p|n

(
1− 1

p

)
≤ n[∏

p|n

p

p− 1

] < n

N
.

It follows from Bertrand’s theorem that

prϕ
( n
N

)
<

2pr−1
n

N[ ∏
p| nN

p

p− 1

] < 2pr−1n

N2
≤ pr−1n

N
.

This completes the proof.
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Finally, we prove the following proposition.

Proposition 4.6. If pr is unlimited and s ≥ 1 is limited. Then for every
limited n ≥ 2, we have n /∈ Ar,s. Furthermore, for each such integer n, the
number pr−1ns − prϕs (n) is always unlimited.

Proof. Let n ≥ 2 be a limited positive integer. Since r is unlimited, then
there exist an infinitesimal positive real number φr and an appreciable rational
number an(s) such that

1 + φr =
pr
pr−1

<
ns

ϕs (n)
= 1 + an (s) .

From (7), it follows that n /∈ Ar,s.

Now, for each such integer n, we assume that there exists a limited integer N0

satisfying
N0 ≥ pr−1ns − prϕs (n) .

Therefore, we can deduce that N0 ≥
pr−1
2

, because

ns − pr
pr−1

ϕs (n) = ns − (1 + φr)ϕs (n) >
ns − ϕs (n)

2
≥ 1

2
.

Which contradicts the fact that pr−1 is unlimited and ns − ϕs (n) ≥ 1. This
completes the proof of Proposition 4.6.

5. Conclusion

The results presented in this paper give us the solubility of certain Diophan-
tine inequalities and equations, where our working set is a subset of positive
integers which is denoted as Wk with k ≥ 1. For further research, by the help
of internal set theory we ask if f (n)−α g (n) changes sign infinitely often on a
proper external subset ofWk, where f, g are two arithmetic functions and α is a
fixed parameter. Similarly as in Section 4, it would be interesting to know some
other properties of the set Ar,s. Namely, it is necessary to know whether Ar,s
contains Niven numbers, Smidth numbers, Woodall numbers, Cullen numbers
and unlimited Fermat numbers.
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